Implementation of Artificial Neural Network (ANN) to Predict Financial Distress (A Case Study on Metal and Mineral Industry Companies Listed on IDX 2019–2023 Period)
DOI:
https://doi.org/10.37034/jems.v7i4.184Keywords:
Artificial Neural Network, Data Mining, Financial Distress, Financial Ratios, Metals and Minerals Industry CompaniesAbstract
This research utilizes data mining techniques, specifically the Artificial Neural Network (ANN) model, to predict financial distress. In this ANN model, five financial ratios serve as the main input variables, namely Return on Assets (ROA), Debt to Assets Ratio (DAR), Current Ratio, Total Assets Turnover, and Operating Cash Flow Ratio. The selection of these ratios is based on evidence that they are effective in predicting financial distress. This study aims to develop a financial distress prediction model for metal and mineral industry companies listed on the Indonesia Stock Exchange during the 2019-2023 period, using a data mining approach with Artificial Neural Network (ANN). The study results show that the financial ratios of companies experiencing financial distress tend to be lower than companies that do not experience it, so these ratios are effective as input variables for the model. The best ANN architecture, found through training using a sample of 26 companies, has a configuration of 25 neurons in the input layer, 10 neurons in the hidden layer, and 1 neuron in the output layer. Further analysis revealed that 12 out of 26 energy companies were predicted to experience financial distress, with the model achieving the highest accuracy of 84.62%.
References
Wulandari, E. W., & Jaeni, J. (2021). Faktor-Faktor Yang Mempengaruhi Financial Distress. Jurnal Ilmiah Universitas Batanghari Jambi, 21(2), 734. https://doi.org/10.33087/jiubj.v21i2.1495
Sidhu, A. V., Jain, P., Singh, S. P., Kanoujiya, J., Rawal, A., Rastogi, S., & Bhimavarapu, V. M. (2023). Impact of financial distress on the dividend policy of banks in India. Journal of Risk and Financial Management, 16(2), 107. https://doi.org/10.3390/jrfm16020107
Paule-Vianez, J., Prado-Román, C., & Gómez-Martínez, R. (2020). Monetary policy uncertainty and stock market returns: influence of limits to arbitrage and the economic cycle. Studies in Economics and Finance, 37(4), 777–798. https://doi.org/10.1108/SEF-04-2020-0102
Kristanti, F. T. (2019). Financial Distress Teori dan Perkembangannya Dalam Konteks Indonesia. Inteligensia Media.
Wu, D., Ma, X., & Olson, D. L. (2022). Financial distress prediction using integrated Z-score and multilayer perceptron neural networks. Decision Support Systems, 159, 113814. https://doi.org/10.1016/j.dss.2022.113814
Dianova, A., & Nahumury, J. (2019). Investigating the effect of liquidity, leverage, sales growth, and good corporate governance on financial distress. JASF: Journal of Accounting and Strategic Finance, 2(2), 143-156. /https://doi.org/10.33005/jasf.v2i2.49
Pranita, K. R., & Kristanti, F. T. (2020). Analisis Financial Distress Menggunakan Analisis Survival. Nominal: Barometer Riset Akuntansi Dan Manajemen, 9(2), 62–79. https://doi.org/10.21831/nominal.v9i2.30917
Alamsyah, A., Kristanti, N., & Kristanti, F. T. (2021). Early warning model for financial distress using Artificial Neural Network. IOP Conference Series: Materials Science and Engineering, 1098(5), 052103. https://doi.org/10.1088/1757-899x/1098/5/052103
Awalia, R., & Titik Kristanti, F. (2023). Prediksi Financial Distress Menggunakan Artificial Neural Network (Ann) Pada Perusahaan Perbankan Yang Terdaftar Di Bursa Efek Indonesia (Bei) Periode 2017-2021. Jurnal Kajian Pendidikan Ekonomi Dan Ilmu Ekonomi, 7(2), 2549–2284.
Zhou, F., Fu, L., Li, Z., & Xu, J. (2022). The recurrence of financial distress : A survival analysis The recurrence of financial distress : A survival analysis. International Journal of Forecasting, 38(3), 1100–1115. https://doi.org/10.1016/j.ijforecast.2021.12.005
Kontan.co.id. (2024). Kinerja Perusahaan Tambang dan Energi Merosot di 2023, Cermati Pemicunya. Kontan .
Ditjen Minerba. (2023). LAPORAN KINERJA DITJEN MINERBA TAHUN 2023.
Jelita, I. N. (2024). Harga Nikel Terus Anjlok, Smelter Nikel Bisa Tutup Beroperasi. Mediaindonesia.com. https://mediaindonesia.com/ekonomi/646853/harga-nikel-terus-anjlok-smelter-nikel-bisa-tutup-beroperasi?utm_source=chatgpt.com
Reuters. (2023). China’s 2024 steel demand to fall 1.7%, exports to slow - state researcher. Reuters.com. https://www.reuters.com/markets/commodities/chinas-2024-steel-demand-fall-17-this-year-state-researcher-2023-12-22/
Muparuri, L., & Gumbo, V. (2022). On logit and artificial neural networks in corporate distress modelling for Zimbabwe listed corporates. Sustainability Analytics and Modeling, 2, 100006. https://doi.org/10.1016/j.samod.2022.100006
Titikkristanti, F., & Mahardika, I. P. A. B. (2023). Artificial Neural Network for Financial Distress Prediction on Energy Companies Listed in Indonesia. 2023 International Conference on Digital Business and Technology Management, ICONDBTM 2023, c. https://doi.org/10.1109/ICONDBTM59210.2023.10327203
Kuizinienė, D., Savickas, P., Kunickaitė, R., Juozaitienė, R., Damaševičius, R., Maskeliūnas, R., & Krilavičius, T. (2024). A comparative study of feature selection and feature extraction methods for financial distress identification. PeerJ Computer Science, 10. https://doi.org/10.7717/PEERJ-CS.1956
Kristianto, H., & Rikumahu, B. (2019). A cross model telco industry financial distress prediction in Indonesia: Multiple discriminant analysis, logit and artificial neural network. 2019 7th International Conference on Information and Communication Technology, ICoICT 2019, 1–5. https://doi.org/10.1109/ICoICT.2019.8835198
Kristanti, F. T., Safriza, Z., & Salim, D. F. (2023). Are Indonesian construction companies financially distressed? A prediction using artificial neural networks. Investment Management and Financial Innovations, 20(2), 41–52. https://doi.org/10.21511/imfi.20(2).2023.04
Prihadi, T. (2019). Analisis Laporan Keuangan Konsep dan Aplikasi. PT. Gramedia Pustaka Utama.
Ramdhan, M. (2021). Metode Penelitian. Cipte Media Nusantara.
Zellatifanny, C. M., & Mudjiyanto, B. (2018). Tipe Penelitian Deskripsi Dalam Metode Penelitian. Diakom: Jurnal Media Dan Komunikasi, 1(2), 83-90.
Fasya, N. S., & Rikumahu, B. (2021). Analysis of Financial Distress Prediction Using Artificial Neural Network in Retail Companies Registered in Indonesia Stock Exchange. International Journal of Advanced Research in Economics and Finance, 3(1), 121-128.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Wardanianti Sari Rahayu, K Khairunnisa

This work is licensed under a Creative Commons Attribution 4.0 International License.